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We describe, with a Hopf bifurcation induced by frustrated drifts, a phenomenon in pattern formation. This
generic effect occurs in systems with broken continuous translational and reflection symmetry. Above the
bifurcation point periodic or aperiodic motion occurs depending on the actual manifestation of the symmetry
breaking. The qualitative aspects of the phenomenon are discussed within a generalized Swift-Hohenberg
equation. In addition, based on detailed calculations, also a geometry for a Rayleigh-Bénard experiment is
proposed, where the effect can be investigated experimentally.
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I. INTRODUCTION

The understanding of complex phases as well as complex
spatiotemporal behavior of matter is one of the central issues
in physics [1,2]. The elaboration of the variety of phases of
matter is mainly a topic of physics at thermal equilibrium
[2]. When driven far from thermal equilibrium, the various
inner degrees of freedom of complex fluids, such as in binary
fluid mixtures or in liquid crystals, lead to rich bifurcation
scenarios [1]. Especially the various bifurcations from a
simple basic state allow the application of perturbational
methods and contribute to the popularity of complex fluids
for investigations of spatiotemporal complexity. Instead of
complex fluids, one might use simple fluids with inhomoge-
neous container boundaries, enforcing a lower symmetry. We
predict a geometry with broken symmetries, where the first
bifurcation changes from a stationary into an oscillatory one.
The nonlinear solutions behavior can be temporal periodic or
aperiodic in space-time. These phenomena are described per-
turbatively in terms of amplitude equations. It is an example
of geometrically induced spatiotemporal complex behavior
occurring already at the first bifurcation, which also shares
common features with coupled oscillator systems [3] and a
variant of the Kuramoto-Sivashinsky equation [4].

Broken spatial symmetry occurs in Rayleigh-Bénard con-
vection (RBC), for example, when the top and the bottom
plate have some characteristic undulation (Fig. 1). If the top
and bottom boundaries have undulations of the same wave
number and if they are also in phase [Fig. 1(a)], then station-
ary convection sets in above a critical temperature differ-
ence, AT=T,—T,>AT,, between the temperature at the
top (T,) and the bottom (7',) plate. A phase difference be-
tween the top and the bottom plate, as indicated in Figs. 1(b)
and 1(c), leads to drifting convection rolls to the left or to the
right depending on the sign of the phase shift [5].

In experiments, symmetries for convection are often
weakly broken by irregularities at container boundaries or by
the porosity in a saturated porous medium. The irregularities
are expected to be of a statistical nature. Nevertheless, some
aspects of those irregularities may be modeled by periodic
undulations in the container boundaries. Boundary undula-
tions, inducing homogeneous drifts as indicated in Figs. 1(b)
and 1(c), are less appropriate for modeling aspects of irregu-
larities, such as, for instance, a vanishing spatial mean value
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for drifts induced by irregularities. Therefore, we consider
here a situation corresponding to a geometry where the phase
shift ¢ between the wavy top and bottom boundary varies
periodically in space, however, slow on the scale of the con-
vection rolls. We show that a phenomenon, which we call the
Hopf bifurcation by frustrated drifts, is a consequence. It is
essential for the occurrence of such time-dependent solutions
that the space-dependent phase shift acts on a spatially peri-
odic pattern near onset.

II. MODEL EQUATION

At first (for applications to Rayleigh-Bénard convection
see below) we illustrate the qualitative aspects of the inter-
play of spatially periodic drifts and spatially periodic pat-
terns near onset within the following models in one dimen-
sion:

du=[e+ Lo+ M(x)d,Ju—us. (1)

M (x)d, is a 2r-periodic “drift” and breaks the spatial trans-
lational symmetry. With the linear operator .%4,= af Eq. (1)
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FIG. 1. A sketch of a Rayleigh-Bénard convection cell with
wavy top and bottom boundaries. Periodic in phase undulation of
the boundaries leads to a stationary onset to convection rolls (a).
As indicated in (b) and (c), a phase difference between the
two boundary undulations leads above threshold to drifting convec-
tion rolls and the drift direction depends on the sign of the relative
phase .
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corresponds to a real Ginzburg-Landau equation (GL) and
with Z,=—(q3+ 3>)? Eq. (1) corresponds to a generalized
Swift-Hohenberg equation (SH) [1]. If not stated otherwise
we choose M (x)=2G cos(2kx+ ¢).

For a constant drift M J,u[ M (x)= const.], the drift term
can be removed in both cases by transforming into the co-
moving coordinate frame. For a single periodic M (x) with
vanishing spatial mean (M (x))=0 the drifts are frustrated.
This frustration leads to a time-dependent solutions behavior
above some critical amplitude of M(x) in the case of the
generalized SH equation. For the Ginzburg-Landau case,
however, where the spatially periodic drifts act on a homo-
geneous phase transition, not on a spatially periodic one, no
time dependence is induced. If M (x) is not single periodic
the solutions behavior of the generalized SH equation near
the onset is more complex, as described below.

For periodic M(x) the solutions of the linear part of
Eq. (1) are either symmetric uy(x)=uy (x+\) with respect
to a translation by A=m/k or antisymmetric u,(x)
=—u,(x+\). [usx) correspond to the harmonic and
u,(x) correspond to the subharmonic solutions.]

A. Linear stability

In the homogeneous limit G =0, the linear part of Eq. (1)
is solved by u=F exp[ot+igx]. This leads in the neutrally
stable case =0 to an expression for the neutral curve of the
Ginzburg-Landau equation, sg L=g4?% and for the Swift-
Hohenberg equation, e5”=(g5—g?)?. These neutral curves
have minima at the critical values chL=(), qu =gy, and
g.=0.

In the presence of a spatially periodic drift term the linear
solutions can be written in terms of a Floquet-Bloch expan-
sion u(x,t)=e?" " SN _ | Fexp(ilkx)+c.c. (with —k<g
—qo<k and c.c.=complex conjugate). Harmonic and sub-
harmonic parts with respect to the external modulation sepa-
rate in the linear part of Eq. (1) and give rise to two different
thresholds.

The main difference between the GL and SH version of
Eq. (1) can be calculated within a subharmonic two mode
ansatz u=explot+igx)(Fexplikx]+F_exp[—ikx])+c.c.
This leads to the following dispersion relations for g=gqq:

0= k%G, @
o =[e—4k>—k*]1=[16K°— G2 (g2 — k)12 (3)

For the GL equation the eigenvalue o in Eq. (2) is always
real, whereas for the SH equation the eigenvalue becomes

complex for G>4k3/\/q;—k>. This reflects the essential
property that spatially periodic drifts lead only to time-
dependent solutions when they interact with a spatially peri-
odic solution. In Fig. 2 the thresholds ¢,=¢(Rel c]=0),
calculated with many modes of the Fourier expansicn, are
shown for the symmetric (solid and dashed line) and the
antisymmetric solutions (dash-dotted line) as a function o,
the modulation strength and for a fixed modulation wave
number k=1/16. At the modulation strength where both
thresholds cross each other, both linear instabilities compete
with each other and one has a codimension-2 bifurcation [1].
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FIG. 2. The thresholds of the harmonic (solid lines) and the
subharmonic solutions (dash-dotted) of Eq. (1) are given as function
of the modulation strength G and at the fixed modulation wave
number k=1/16. The bifurcation of the harmonic solutions from
u=0 is stationary at smaller values of the modulation strength G
(solid line) and oscillatory for larger G values (dashed line). The
subharmonic solution (dash-dotted) shows a Hopf bifurcation in the
whole plotted G range. The cross point between the two thresholds
is a codimension-2 bifurcation [1] being approximately located at
GCTPZO.OZO 72.

B. Eigenmodes

At the Hopf bifurcation the linear solution of Eq. (1),
u=e"*S [Ae'*'F +B*e '“!F Je!!®™+cc., is a super-
position of left (LTW’s) and right traveling waves (RTW’s)
as shown in Fig. 3. The envelope of these traveling waves is
spatially fixed with respect to the external modulation,
whereas the phase is moving. The envelope of the LTW
reaches its maximum in the range where the RTW has its
minimum. This relative phase shift of the spatial modulation
reduces the nonlinear interaction between both modes and
coexistence becomes possible, namely, standing waves. This
is different from other systems, such as for example in binary
fluid convection and electroconvection, where only one ex-
tended unmodulated traveling mode survives.
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FIG. 3. The eigenfunctions of the linear part of Eq. (1) in the
range 0<x<21r/k at a Hopf bifurcation. Part (a) shows the left and
part (b) the right traveling wave just above the codimension-2 point
Gcrp at the parameters G=0.022 and k=1/16. Both eigenfunc-
tions are subharmonic with respect to the external modulation
M(x)=2G cos(2kx).
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FIG. 4. The solution u(x,t) of Eq. (1) is shown just above a
Hopf bifurcation in a space-time plot. As shown in part (a) u(x,¢) is
periodic in time for a single periodic modulation M (x) and aperi-
odic for a two periodic modulation M (x) as shown in part (b).

C. Nonlinear solution

Above a Hopf bifurcation by frustrated drifts a typical
temporal behavior of a nonlinear standing wave is shown in
Fig. 4(a). Equation (1) was solved for a single periodic
modulation M(x)=2G cos(2kx) with the parameters
£=0.05, G=0.05, and k=1/16. Just above threshold this
solution corresponds roughly to a superposition of the two
eigenmodes given in Fig. 3 and the temporal behavior at any
space point x is nearly harmonic. Increasing the value of &
the temporal behavior of the solution at each space point
becomes more and more anharmonic. This happens espe-
cially near the secondary bifurcation, leading to the station-
ary solution. In x regions, where both traveling wave eigen-
modes shown in Fig. 3 have comparable amplitudes, the
nonlinear solution resembles an extended standing wave,
otherwise it has the shape of modulated traveling waves [see
Fig. 4(a)]. The regions in Fig. 4(a) with standing wave be-
havior have a similar form as defects between the LTW’s and
RTW’s, namely, sinks and sources. These similarities, how-
ever, should not be overemphasized, because the eigenmodes
in Fig. 3 are already of that spatially modulated form. The
transition from standing waves to the stationary solution at
large & values is of first order with a large hysteresis.

A two periodic drift coefficient M(x)=2G cos(2kx
+7/2) + 2G ,cos(3kx+ 7/4) leads, instead of standing waves,
to aperiodic and chaotic motion as indicated in Fig. 4(b) (for
G=0.045, G,=0.046, k=1/16, and £=0.068).

With the ansatz u=A exp(igyx)+c.c., M(x)=~O0(e),
k~0(&'?), and go=1 from Eq. (1) the following general-
ized Ginzburg-Landau equation can be derived:

dA=[e+iM(x)+497]A—3|A]%4, 4)

which has the same solution behavior as the starting equa-
tion, apart from small quantitative differences (i is the imagi-
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FIG. 5. Rayleigh-Bénard convection: Bifurcation diagram for a
top wavy boundary and a spatially modulated temperature at the
bottom boundary. In the shaded range the onset of convection is
oscillatory (Hopf bifurcation by frustrated drifts), and otherwise
stationary. The bottom temperature is modulated with an amplitude
F, (see text) and with a wave number k,=3k. The top boundary is
undulated with an amplitude F, and with a wave number kq=2k
(kd=0.1 and d=thickness). The dots are directly calculated from
the Navier-Stokes equations (see [6]) and the solid line from the
linear part of the generalized amplitude equation ( 5).

nary unit). Similar generalized GL equations are expected for
systems with comparable broken symmetries. An example is
discussed below for Rayleigh-Bénard convection. The de-
scribed properties are generic and not specific to the SH
equation. Essential for the occurrence of the Hopf bifurcation
by frustrated drifts is the interplay between the periodic in-
stability and the spatially periodic drift, whereas the wave-
length of the periodic drift is much larger than that of the
instability (k<<q,).

The similarities of Eq. (4) with model equations for
coupled oscillator families [1,3], especially for a random
function M (x), are obvious and will be discussed elsewhere.

IIL. RAYLEIGH-BENARD CONVECTION

For a Rayleigh-Bénard cell with two wavy boundaries and
a phase shift between both, as shown in Fig. 1, drifting con-
vection rolls have been observed [5]. We find that a drifting
pattern in RBC can also be induced by a combination of an
undulated boundary and a modulated temperature at the
other boundary. For instance, by combining an undulated top
boundary located at z=d(1+H,) [with Hy=Fjcos(kyx)]
and a modulated temperature at the bottom boundary at
z=0, Tp=Ty,+H(x)(T,—T,)/R. [with the dimensionless
H,(x)=F,cos(kyx+¢,), and R.=277*/4 being the critical
Rayleigh-number for free-slip boundary conditions], with
equal modulation wave numbers ky=k, as well as finite
phase shift ¢,#0 [6].

A combination of the undulation of the top boundary
Hy(x) with wave number ko=2k and a modulation of the
temperature at the bottom boundary H,(x) with ¢,=m/2
and k, =3k leads to spatially periodic virtual drift directions,
just as for our model in Eq. (1) or in Eq. (4).

Near the onset of convection, an equation for the envelope
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of the RBC rolls can be derived by a perturbation calculation
[7]. For the expansion one uses the small parameter
e=(AT—AT_.)/AT., which measures the distance from the
critical temperature difference at which the convection sets
in. Assuming additionally small modulation amplitudes and
modulation wave numbers H(x),(k/q.)*<&'? (g, is the
wave number of the convection rolls) the perturbation calcu-
lation provides the following amplitude equation for stress
free boundary conditions:

1+ 2, |22
370/R,

35,
7'0(9, AO: e— €H0+3H0+

_\/5(271

+ITT" gigaxHo_ —]_QZR-C“&XHZ) JAO

242

1 2.2 2
Ay HO_R—Hz F+ E39y— alAg|* A,
C

®)

+

with £=a=8/372 and 7,=97%/2R, .

An analysis of the linear part of Eq. (5) as well as a full
analysis of the Navier-Stokes equations [6] shows that by
increasing the modulation amplitudes in RBC the onset of a
stationary periodic pattern can be changed via frustrated
drifts into an oscillatory one. Figure 5 displays the parameter
range for RBC with stress free boundary conditions where
the onset of convection is oscillatory (shaded region) and
otherwise stationary. The modulation wave numbers were
fixed at k,=3k, ky=2k, and kd=0.1 (with d the distance
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between top and bottom boundary). The solid line in Fig. 5 is
calculated from the linear part of Eq. (5), whereas the dots
are calculated from the equations of motion for thermal con-
vection. There is also no qualitative difference between the
stress free and realistic nonslip boundary conditions for the
velocity field at the boundaries [6].

IV. DISCUSSION AND CONCLUSION

We described an example, where geometrically induced
broken symmetries lead to a rich bifurcation behavior via the
Hopf bifurcation by frustrated drifts. The essential features,
described in terms of a generalized Swift-Hohenberg model,
are generic for systems having a spatial periodic first insta-
bility and similar broken symmetries. Based on detailed cal-
culations, we also predict this effect for an appropriately de-
signed Rayleigh-Bénard convection experiment. Further
candidates are the Taylor-Couette system or thermal convec-
tion and electroconvection in nematic liquid crystals having
a spatially periodic pretilt angle of the director with respect
to the top and bottom boundary. For convection in nematic
liquid crystals with less well defined surface alignment, Hopf
bifurcation by frustrated drifts may lead to new experimental
scenarios.
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FIG. 4. The solution u(x,t) of Eq. (1) is shown just above a
Hopf bifurcation in a space-time plot. As shown in part (a) u(x,?) is
periodic in time for a single periodic modulation M (x) and aperi-
odic for a two periodic modulation M(x) as shown in part (b).



